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1. Background
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Model Editing (Knowledge Editing) aims to edit LLMs to 
answer questions with updated knowledge.

Theresa May
Q: Who is UK’s Prime 

Minister?

Knowledge cutoff 

from 2022

Retriever Rishi Sunak

Retrieval Augmented Generation

Retrieval Augmented Generation (RAG) seem a good solution.
 So, what is the problem?

Edited fact bank 
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Q: What is the net worth 

of UK’s Prime Minister?

Knowledge cutoff 

from 2022

Retriever

Problem:
Facts beyond one-hop is hard to retrieve by current retrieval 
method (e.g., BM25 or DPR).

Top-1 (UK, head of government, Rishi Sunak)

Top-2 (UK, net worth, £11.8 trillion)

Top-3 (UK, head of state, King Charles III)

….

Top-N (Rishi Sunak, net worth, £651 million)

£529 million

Only top 
retrieval facts 
can be used.



2. Retrieval-augmented Knowledge Editing (RAE)
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External 
Knowledge Graph
(i.e., Wikidata5m)

]

U.K. Rishi Sunak £651 million

Theresa May

(UK, head of government, Theresa May)(UK, head of government, Rishi Sunak)

Q: What is the net worth of UK’s Prime Minister?

Edited fact Original fact

Step 1: Multi-hop Knowledge Retrieval

£529 million



2. Retrieval-augmented Knowledge Editing (RAE)
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Step 2: In-context learning for editing 

Q: What is the net worth 

of UK’s Prime Minister?

Knowledge cutoff 

from 2022

Retriever

£651 million

U.K. Rishi 
Sunak

£651 
million



Retrieval Objective

3. MI-Based Retrieval Objective
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Maximize mutual information between subgraph and questions:

max
𝐺𝑠

 𝐼 (𝑄; 𝐺𝑆)  =  𝐻(𝑄) −  𝐻(𝑄 ∣  𝐺 = 𝐺𝑆)

To simplify the setting, we consider one multi-hop question 𝑞 
at a time, which can be reformulated as:

max
𝐺𝑠

𝑝(𝑞, 𝐺 =  𝐺𝑆)

𝑝(𝐺 =  𝐺𝑆)
log2

𝑝(𝑞, 𝐺 =  𝐺𝑆)

𝑝(𝐺 =  𝐺𝑆)

where 𝑄 are questions whose answers require editing,
𝐺𝑆 is our retrieval knowledge graph,
𝐼 denotes mutual information, 𝐻 denotes entropy.



4. Next Fact Prediction
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Probabilities Estimation

Probabilities decomposition by Conditional Probability. 

𝑝(𝑞, 𝐺 =  𝐺𝑆)

𝑝(𝐺 =  𝐺𝑆)
=

𝑝(𝑟1, 𝑡1, ℎ2, 𝑟2, 𝑡2, . . . , ℎ𝑛, 𝑟𝑛, 𝑡𝑛|𝑞, ℎ1)

𝑝 (𝑟1, 𝑡1, ℎ2, 𝑟2, 𝑡2, . . . , ℎ𝑛, 𝑟𝑛, 𝑡𝑛|ℎ1)
⋅

𝑝(𝑞, ℎ1)

𝑝(ℎ1)

Retrieved facts 𝐺𝑆 are connected triplets:

 𝐺𝑆  = ℎ1, 𝑟1, 𝑡1, … , ℎ𝑛, 𝑟𝑛, 𝑡𝑛

where ℎ, 𝑟, 𝑡 are the head entity, relation, and tail entity.

: Fixed value when given a specific question 𝑞
𝑝(𝑞, ℎ1)

𝑝(ℎ1)



4. Next Fact Prediction
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Probabilities Estimation

𝑝(𝑞, 𝐺 =  𝐺𝑆)

𝑝(𝐺 =  𝐺𝑆)
=

𝑝(𝑟1, 𝑡1, ℎ2, 𝑟2, 𝑡2, . . . , ℎ𝑛, 𝑟𝑛, 𝑡𝑛|𝑞, ℎ1)

𝑝 (𝑟1, 𝑡1, ℎ2, 𝑟2, 𝑡2, . . . , ℎ𝑛, 𝑟𝑛, 𝑡𝑛|ℎ1)
⋅

𝑝(𝑞, ℎ1)

𝑝(ℎ1)

𝑝 𝑟1, 𝑡1, ℎ2, 𝑟2, 𝑡2, . . . , ℎ𝑛, 𝑟𝑛, 𝑡𝑛 𝑞, ℎ1

= 𝑝  𝑡1, ℎ2, 𝑟2, 𝑡2, . . . , ℎ𝑛, 𝑟𝑛, 𝑡𝑛 𝑞, ℎ1, 𝑟1 ⋅  𝑝 (𝑟1 | 𝑞, ℎ1)

First,  ProbA  has a recursive pattern:

We can solve it step by step. But how to estimate ProbB ? 

Probabilities decomposition by Conditional Probability. 
ProbA

ProbB
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What is the nationality of the author of  Misery  ? 

Misery

English

Richard
Dawkins

Royal Society of 
Literature

U.K.

Stephen
King U.S.

Final path

Discarded path

Before edit path

Thriller

Anglic

Next Fact Prediction

The probability 𝑝 (𝑟1 |𝑞, ℎ1) for each candidate relation can be estimated by
an auto-regressive language model. 

𝑝( 𝑟1 | 𝑞, ℎ1) ≈ ς𝑖=1
𝑟1 𝑓𝜙( 𝑤𝑟1

𝑖
|𝑤𝑞

1
, . . . , 𝑤𝑞

𝑞
, 𝑤ℎ1

1
, . . . , 𝑤ℎ1

ℎ1 , 𝑤𝑟1

1
 , . . . , 𝑤𝑟1

𝑖−1
)

𝑞

𝑟1

ℎ1

𝑡1/ℎ2
𝑟2

𝑡2

ProbB



5. Redundant Knowledge Pruning
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Editing Uncertainty

We define it as the entropy of the output generated by large language 
models.

𝐻(𝑌 | 𝑋 =  𝑥)  = − ෍

𝑦

𝑝(𝑦 | 𝑥) log2 𝑝(𝑦|𝑥)

Use the LLM’s output entropy as an indicator of uncertainty.

➢ Lower entropy indicates more confidence.
➢ We use facts with lowest entropy as retrieval results.

➢ Irrelevant facts can mislead the LLM.
➢ We propose to Prune facts to avoid hallucinations.

How?
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5. Redundant knowledge Pruning

The entropy is minimized when the retrieved facts are 
precisely those required to answer the question.



6. Experiments - Settings
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We compare with six baseline methods, including: 

• Model weight updating methods: 

➢ Fine Tune, ROME, MEMIT

• Auxiliary models methods: 

➢ SEARC

•  In-context learning methods: 

➢ Mello, DeepEdit

To evaluate editing performance, we use three multi-hop edit datasets:

• MQUAKE-CF (3000 cases)

• MQUAKE-T (1868 cases)

• Popular (274 cases)
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6. Experiments – Editing Performance

The multi-hop edited accuracy metrics is reported: if the 
edited answer appears in the final output, it is a correct edit.
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7. Experiments – Multi-hop Fact Retrieval Performance

We use the metric 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾, which calculates the proportion of 
relevant facts within the top 𝐾 results:  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 = |{relevant 
facts}|/𝐾 × 100%, abbreviated as 𝑃@𝐾.
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7. Experiments – Pruning improves editing performance

Pruning achieves an average accuracy improvement of 14.5% across 
various language models.



16

7. Experiments – Performance with batch size

RAE’s accuracy remains stable with increasing 
editing instances, whereas Mello’s accuracy 
significantly declines with increasing instances.
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7. Experiments – RAE works with proprietary models

RAE achieves better editing performance with lower 
inference cost over different proprietary models.
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