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1. Background

Model Editing (Knowledge Editing) aims to edit LLMs to
answer questions with updated knowledge.
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Retrieval Augmented Generation (RAG) seem a good solution.
So, what is the problem?




1. Background- Editing for Multi-hop questions
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Problem:

Facts beyond one-hop is hard to retrieve by current retrieval
method (e.g., BM25 or DPR).




2. Retrieval-augmented Knowledge Editing (RAE)
Step 1: Multi-hop Knowledge Retrieval
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Q: What is the net worth of UK’s Prime Minister?




2. Retrieval-augmented Knowledge Editing (RAE)

Step 2: In-context learning for editing
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3. Mi-Based Retrieval Objective

Retrieval Objective

Maximize mutual information between subgraph and questions:

I I'(Q; Gs) = HQQ) — HQ | G =Gs)

where @ are questions whose answers require editing,
G is our retrieval knowledge graph,
I denotes mutual information, H denotes entropy.

To simplify the setting, we consider one multi-hop question g
at a time, which can be reformulated as:

p(q,G = Gs)1 p(q,G = Gg)

max

(0
G pG = Gy P2 p(G = Gy)




4. Next Fact Prediction

Retrieved facts G¢ are connected triplets:
GS = (h'll 11, tl’ “er hn, ™, tn)

where h,r,t are the head entity, relation, and tail entity.

Probabilities Estimation

Probabilities decomposition by Conditional Probability.
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4. Next Fact Prediction

Probabilities Estimation

p(q'G — GS) 'p(rlrtlf hz,T'Z, tZ:-' hn'rn' nlqrhl)

p(G = GS) p (rl; tlr hz, I, tZi v hni ™, nlhl)

First, Prob, has a recursive pattern:
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We can solve it step by step. But how to estimate Prob, ?




4. Next Fact Prediction

Next Fact Prediction

The probability p (11 |q, hy) for each candidate relation can be estimated by
an auto-regressive language model.
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5. Redundant Knowledge Pruning

> Irrelevant facts can mislead the LLM.
» We propose to Prune facts to avoid hallucinations.

How?
Use the LLM'’s output entropy as an indicator of uncertainty.

Editing Uncertainty
We define it as the entropy of the output generated by large language

models.
HY X = %) == ) p(y]x) logz p(yl)
y

» Lower entropy indicates more confidence.
> We use facts with lowest entropy as retrieval results.




5. Redundant knowledge Pruning
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The entropy is minimized when the retrieved facts are
precisely those required to answer the question.




6. Experiments - Settings

To evaluate editing performance, we use three multi-hop edit datasets:
« MQUAKE-CF (3000 cases)
* MQUAKE-T (1868 cases)
* Popular (274 cases)

We compare with six baseline methods, including:
* Model weight updating methods:
» Fine Tune, ROME, MEMIT
* Auxiliary models methods:
» SEARC
* In-context learning methods:
» Mello, DeepEdit




6. Experiments - Editing Performance

Editing Methods
. .. | Subgraph
Language Models Datasets | Fine Tune | ROME | MEMIT | SEARC | Mello | DeepEdit Retriever RAE(ours)
M-CF 3.8 1.7 2.3 4.0 0.0 0.0 219 62.8
GPT-2 (1.5B) M-T 5.8 6.4 1.6 2.7 0.0 0.0 20.3 61.8
Popular 6.2 4.3 2.9 1.1 0.0 0.0 26.7 47.1
M-CF 7.7 7.6 8.1 6.8 15.3 9.3 36.2 69.3
GPT-J (6B) M-T 3.1 4.1 10.6 2.8 36.7 19.6 51.2 63.9
Popular 6.8 7.5 4.4 1.3 12.8 6.6 45.8 49.6
M-CF 5.6 1.7 2.3 7.9 10.7 10.8 40.1 66.8
Falcon (7B) M-T 17.2 7.3 1.6 4.5 51.5 31.7 56.1 61.6
Popular 2.1 4.0 1.1 3.0 8.1 9.5 43.0 50.0
M-CF 4.8 8.4 7.6 7.9 10.2 11.4 394 67.2
Vicuna (7B) M-T 23.1 5.0 1.7 4.5 51.7 40.4 58.6 63.2
Popular 4.0 3.8 2.4 3.0 7.7 8.2 29.5 36.1
Llama? M-CF 54 6.3 3.8 7.9 20.7 11.2 45.7 69.1
(chat) (7B) M-T 17.1 8.7 1.7 4.5 49.4 37.9 63.1 66.2
Popular 5.2 13.8 49 3.0 13.5 11.1 41.9 514

The multi-hop edited accuracy metrics is reported: if the
edited answer appears in the final output, itis a correct edit.




7. Experiments — Multi-hop Fact Retrieval Performance

MQUAKE-CF
Question Type 2-hops 3-hops 4-hops

Category Retrieval P@1 | P@2 | P@1 | P@3 | P@1 | P@4
KG Link 52.7 28.7 18.2 3.7 14.0 0.0

Embedding QR 62.3 7.7 14.7 0.0 12.3 0.0
Mello(Llama2) 84.3 80.0 80.7 42.3 83.3 25.7

Probability SR(GPT-2) 77.7 50.3 67.3 25.3 65.0 20.0
SR(Llama2) 78.3 55.7 79.7 37.0 69.3 28.7

RAE(GPT-2) 33.0 66.3 77.3 41.0 80.3 43.7

Mutual RAE(GPT-)) 33.0 69.7 81.3 53.7 82.7 54.0
Information RAE(Falcon) 82.3 70.7 72.3 44.3 81.7 47.3
RAE(Vicuna) 31.0 66.7 79.3 50.3 85.0 50.0

RAE(Llama2) 82.7 69.3 84.0 49.3 82.0 47.0

We use the metric Precision@K, which calculates the proportion of

relevant facts within the top K results: Precision@K = |{relevant
facts}|/K x 100%, abbreviated as P@K.




7. Experiments - Pruning improves editing performance

Dataset MQUAKE-CF

Type Strategy GPT-2 | GPT-J | Falcon | Vicuna Llama2
(chat)

w/0 Pruning 63.0 63.7 65.2 63.8 70.1

2-hops w/ Pruning 73.3 75.5 74.5 73.5 75.8
Gain 16.3%7 | 185%7 | 143%7 | 15.2%T | 8.1%7

w/o Pruning 43.1 53.8 55.6 55.0 60.3

3-hops w/ Pruning 53.2 65.4 62.1 62.7 65.8
Gain 23.4%7 | 21.6%7T | 11.7%T | 14.0%T | 9.1%7

w/o Pruning 49.9 58.8 55.2 61.5 61.6

4-hops w/ Pruning 61.9 66.9 62.9 65.5 65.8
Gain 24.0%T | 13.8%T | 13.9%T | 6.5%7T 6.8%T

Pruning achieves an average accuracy improvement of 14.5% across
various language models.




7. Experiments - Performance with batch size
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RAE’s accuracy remains stable with increasing
editing instances, whereas Mello’s accuracy
significantly declines with increasing instances.




7. Experiments — RAE works with proprietary models
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RAE achieves better editing performance with lower
inference cost over different proprietary models.
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